On the exact value of the norm of the Hilbert matrix operator on weighted Bergman spaces
Abstrakti
In this article, the open problem of finding the exact value of the norm of the Hilbert matrix operator on weighted Bergman spaces \(A^p_\alpha\) is adressed. The norm was conjectured to be \(\frac{\pi}{\sin \frac{(2+\alpha)\pi}{p}}\) by Karapetrovic. We obtain a complete solution to the conjecture for \(\alpha > 0\) and \(2+\alpha+\sqrt{\alpha^2+\frac{7}{2}\alpha+3} \le p < 2(2+\alpha)\) and a partial solution for \(2+2\alpha < p < 2+\alpha+\sqrt{\alpha^2+\frac{7}{2}\alpha+3}\). Moreover, we also show that the conjecture is valid for small values of \(\alpha\) when \(2+2\alpha < p \le 3+2\alpha\). Finally, the case \(\alpha = 1\) is considered.Viittaaminen
Lindström, M., Miihkinen, S., & Wikman, N. (2021). On the exact value of the norm of the Hilbert matrix operator on weighted Bergman spaces. Annales Fennici Mathematici, 46(1), 201–224. Noudettu osoitteesta https://afm.journal.fi/article/view/109770
Copyright (c) 2021 The Finnish Mathematical Society
Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.