On the exact value of the norm of the Hilbert matrix operator on weighted Bergman spaces

Författare

  • Mikael Lindström Åbo Akademi University, Department of Mathematics
  • Santeri Miihkinen Åbo Akademi University, Department of Mathematics
  • Niklas Wikman Åbo Akademi University, Department of Mathematics

Abstract

In this article, the open problem of finding the exact value of the norm of the Hilbert matrix operator on weighted Bergman spaces \(A^p_\alpha\) is adressed. The norm was conjectured to be \(\frac{\pi}{\sin \frac{(2+\alpha)\pi}{p}}\) by Karapetrovic. We obtain a complete solution to the conjecture for \(\alpha > 0\) and \(2+\alpha+\sqrt{\alpha^2+\frac{7}{2}\alpha+3} \le p < 2(2+\alpha)\) and a partial solution for \(2+2\alpha < p < 2+\alpha+\sqrt{\alpha^2+\frac{7}{2}\alpha+3}\). Moreover, we also show that the conjecture is valid for small values of \(\alpha\) when \(2+2\alpha < p \le 3+2\alpha\). Finally, the case \(\alpha = 1\) is considered.
Sektion
Articles

Publicerad

2021-06-24

Referera så här

Lindström, M., Miihkinen, S., & Wikman, N. (2021). On the exact value of the norm of the Hilbert matrix operator on weighted Bergman spaces. Annales Fennici Mathematici, 46(1), 201–224. Hämtad från https://afm.journal.fi/article/view/109770